Heavy ion Analysis Libriares
Loading...
Searching...
No Matches
Hal::FemtoYlmMath Class Reference
Inheritance diagram for Hal::FemtoYlmMath:

Public Member Functions

 FemtoYlmMath (const FemtoYlmMath &aYlm)
 
FemtoYlmMathoperator= (const FemtoYlmMath &aYlm)
 
double Legendre (int ell, int emm, double ctheta) const
 
void LegendreUpToYlm (int lmax, double ctheta, double *lbuf) const
 
std::complex< double > Ylm (int ell, int m, double theta, double phi) const
 
std::complex< double > Ylm (int ell, int m, double x, double y, double z) const
 
std::complex< double > * YlmUpToL (int lmax, double x, double y, double z)
 
std::complex< double > * YlmUpToL (int lmax, double ctheta, double phi)
 
double ReYlm (int ell, int m, double theta, double phi) const
 
double ReYlm (int ell, int m, double x, double y, double z) const
 
double ImYlm (int ell, int m, double theta, double phi) const
 
double ImYlm (int ell, int m, double x, double y, double z) const
 
double DeltaJ (double aJot1, double aJot2, double aJot) const
 
double ClebschGordan (double aJot1, double aEm1, double aJot2, double aEm2, double aJot, double aEm) const
 
double WignerSymbol (double aJot1, double aEm1, double aJot2, double aEm2, double aJot, double aEm) const
 
void InitializeYlms ()
 

Detailed Description

Definition at line 18 of file FemtoYlmMath.h.

Constructor & Destructor Documentation

◆ FemtoYlmMath() [1/2]

Hal::FemtoYlmMath::FemtoYlmMath ( )

Definition at line 19 of file FemtoYlmMath.cxx.

◆ ~FemtoYlmMath()

Hal::FemtoYlmMath::~FemtoYlmMath ( )
virtual

Definition at line 21 of file FemtoYlmMath.cxx.

◆ FemtoYlmMath() [2/2]

Hal::FemtoYlmMath::FemtoYlmMath ( const FemtoYlmMath & aYlm)

Definition at line 23 of file FemtoYlmMath.cxx.

Member Function Documentation

◆ ClebschGordan()

double Hal::FemtoYlmMath::ClebschGordan ( double aJot1,
double aEm1,
double aJot2,
double aEm2,
double aJot,
double aEm ) const

Definition at line 53 of file FemtoYlmMath.cxx.

◆ DeltaJ()

double Hal::FemtoYlmMath::DeltaJ ( double aJot1,
double aJot2,
double aJot ) const

Definition at line 43 of file FemtoYlmMath.cxx.

◆ ImYlm() [1/2]

double Hal::FemtoYlmMath::ImYlm ( int ell,
int m,
double theta,
double phi ) const

Definition at line 124 of file FemtoYlmMath.cxx.

◆ ImYlm() [2/2]

double Hal::FemtoYlmMath::ImYlm ( int ell,
int m,
double x,
double y,
double z ) const

Definition at line 132 of file FemtoYlmMath.cxx.

◆ InitializeYlms()

void Hal::FemtoYlmMath::InitializeYlms ( )

Definition at line 136 of file FemtoYlmMath.cxx.

◆ Legendre()

double Hal::FemtoYlmMath::Legendre ( int ell,
int emm,
double ctheta ) const

Definition at line 35 of file FemtoYlmMath.cxx.

◆ LegendreUpToYlm()

void Hal::FemtoYlmMath::LegendreUpToYlm ( int lmax,
double ctheta,
double * lbuf ) const

Definition at line 213 of file FemtoYlmMath.cxx.

◆ operator=()

FemtoYlmMath & Hal::FemtoYlmMath::operator= ( const FemtoYlmMath & aYlm)

Definition at line 25 of file FemtoYlmMath.cxx.

◆ ReYlm() [1/2]

double Hal::FemtoYlmMath::ReYlm ( int ell,
int m,
double theta,
double phi ) const

Definition at line 120 of file FemtoYlmMath.cxx.

◆ ReYlm() [2/2]

double Hal::FemtoYlmMath::ReYlm ( int ell,
int m,
double x,
double y,
double z ) const

Definition at line 128 of file FemtoYlmMath.cxx.

◆ WignerSymbol()

double Hal::FemtoYlmMath::WignerSymbol ( double aJot1,
double aEm1,
double aJot2,
double aEm2,
double aJot,
double aEm ) const

Definition at line 83 of file FemtoYlmMath.cxx.

◆ Ylm() [1/2]

std::complex< double > Hal::FemtoYlmMath::Ylm ( int ell,
int m,
double theta,
double phi ) const

Definition at line 94 of file FemtoYlmMath.cxx.

◆ Ylm() [2/2]

std::complex< double > Hal::FemtoYlmMath::Ylm ( int ell,
int m,
double x,
double y,
double z ) const

Definition at line 105 of file FemtoYlmMath.cxx.

◆ YlmUpToL() [1/2]

std::complex< double > * Hal::FemtoYlmMath::YlmUpToL ( int lmax,
double ctheta,
double phi )

Definition at line 286 of file FemtoYlmMath.cxx.

◆ YlmUpToL() [2/2]

std::complex< double > * Hal::FemtoYlmMath::YlmUpToL ( int lmax,
double x,
double y,
double z )

Definition at line 271 of file FemtoYlmMath.cxx.


The documentation for this class was generated from the following files: